skip to main content


Search for: All records

Creators/Authors contains: "Selin, Noelle E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Increasing fire activity and the associated degradation in air quality in the United States has been indirectly linked to human activity via climate change. In addition, direct attribution of fires to human activities may provide opportunities for near term smoke mitigation by focusing policy, management, and funding efforts on particular ignition sources. We analyze how fires associated with human ignitions (agricultural fires and human-initiated wildfires) impact fire particulate matter under 2.5µm (PM2.5) concentrations in the contiguous United States (CONUS) from 2003 to 2018. We find that these agricultural and human-initiated wildfires dominate fire PM2.5in both a high fire and human ignition year (2018) and low fire and human ignition year (2003). Smoke from these human levers also makes meaningful contributions to total PM2.5(∼5%–10% in 2003 and 2018). Across CONUS, these two human ignition processes account for more than 80% of the population-weighted exposure and premature deaths associated with fire PM2.5. These findings indicate that a large portion of the smoke exposure and impacts in CONUS are from fires ignited by human activities with large mitigation potential that could be the focus of future management choices and policymaking.

     
    more » « less
  2. Abstract

    The field of sustainability science has grown significantly over the past two decades in terms of both conceptual development and empirical research. Systems-focused analysis is critical to building generalizable knowledge in the field, yet much relevant research does not take a systems view. Systems-oriented analytical frameworks can help researchers conceptualize and analyze sustainability-relevant systems, but existing frameworks may lack access or utility outside a particular research tradition. In this article, we outline the human–technical–environmental (HTE) framework, which provides analysts from different disciplinary backgrounds and fields of study a common way to advance systems-focused research on sustainability issues. We detail a step-by-step guide for the application of the HTE framework through a matrix-based approach for identifying system components, studying interactions among system components, and examining interventions targeting components and/or their interactions for the purpose of advancing sustainability. We demonstrate the applicability of the HTE framework and the matrix-based approach through an analysis of an empirical case of coal-fired power plants and mercury pollution, which is relevant to large-scale sustainability transitions. Based on this analysis, we identify specific insights related to the applicability of upstream and downstream leverage points, connections between energy markets and the use of pollution control technologies, and the importance of institutions fitting both biophysical dynamics and socioeconomic and political dynamics. Further application of the HTE framework and the identification of insights can help develop systems-oriented analysis, and inform societal efforts to advance sustainability, as well as contribute to the formulation of empirically grounded middle-range theories related to sustainability systems and sustainability transitions. We conclude with a discussion of areas for further development and application of the HTE framework.

     
    more » « less
  3. Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000–4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (~0.03 cm s-1 yet it underestimates measurements from a flux tower study (0.04 cm s-1 vs. 0.07 cm s-1and Amazon litterfall (0.05 cm s-1 vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere–atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution. 
    more » « less
  4. This review examines research on environmental impacts of coronavirus disease 2019 (COVID-19) from a systems-oriented sustainability perspective, focusing on three areas: air quality and human health, climate change, and production and consumption. The review assesses whether and how this COVID-19–focused research (i) examines components of an integrated system; (ii) accounts for interactions including complex, adaptive dynamics; and (iii) is oriented to informing action. It finds that this research to date has not comprehensively accounted for complex, coupled interactions, especially involving societal factors, potentially leading to erroneous conclusions and hampering efforts to draw broader insights across sustainability-relevant domains. Lack of systems perspective in COVID-19 research reflects a broader challenge in environmental research, which often neglects societal feedbacks. Practical steps through which researchers can better incorporate systems perspectives include using analytical frameworks to identify important components and interactions, connecting frameworks to models and methods, and advancing sustainability science theory and methodology. 
    more » « less
  5. Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in the coastal city of Boston, the third largest metropolitan area in the Northeastern United States. With a median of 1.37 ng m −3 , atmospheric Hg concentrations measured from August 2017 to April 2019 were at the low end of the range reported in the Northern Hemisphere and in the range reported at North American rural sites. Despite relatively low ambient Hg concentrations, we estimate anthropogenic emissions to be 3–7 times higher than in current emission inventories using a measurement-model framework, suggesting an underestimation of small point and/or nonpoint emissions. We also test the hypothesis that a legacy Hg source from the ocean contributes to atmospheric Hg concentrations in the study area; legacy emissions (recycling of previously deposited Hg) account for ∼60% of Hg emitted annually worldwide (and much of this recycling takes place through the oceans). We find that elevated concentrations observed during easterly oceanic winds can be fully explained by low wind speeds and recirculating air allowing for accumulation of land-based emissions. This study suggests that the influence of nonpoint land-based emissions may be comparable in size to point sources in some regions and highlights the benefits of further top-down studies in other areas. 
    more » « less
  6. Abstract

    Human activities have released large quantities of neutral persistent organic pollutants (POPs) that may be biomagnified in food webs and pose health risks to wildlife, particularly top predators. Here we develop a global 3‐D ocean simulation for four polychlorinated biphenyls (PCBs) spanning a range of molecular weights and volatilities to better understand effects of climate‐driven changes in ocean biogeochemistry on the lifetime and distribution of POPs. Observations are most abundant in the Arctic Ocean. There, model results reproduce spatial patterns and magnitudes of measured PCB concentrations. Sorption of PCBs to suspended particles and subsequent burial in benthic marine sediment is the dominant oceanic loss process globally. Results suggest benthic sediment burial has removed 75% of cumulative PCB releases since the onset of production in 1930. Wind speed, light penetration, and ocean circulation exert a stronger and more variable influence on volatile PCB congeners with lower particle affinity such as chlorinated biphenyl‐28 and chlorinated biphenyl‐101. In the Arctic Ocean between 1992 and 2015, modeled evasion (losses) of the more volatile PCB congeners from the surface ocean increased due to declines in sea ice and changes in ocean circulation. By contrast, net deposition increased slightly for higher molecular weight congeners with stronger partitioning to particles. Our results suggest future climate changes will have the greatest impacts on the chemical lifetimes and distributions of volatile POPs with lower molecular weights.

     
    more » « less